Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Front Microbiol ; 15: 1362968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633691

RESUMO

Background: Poyang Lake is the largest freshwater lake in China, and there are several studies on the composition and diversity of bacteria in Poyang Lake, while few quantitative studies were carried out on the response of the bacterial community to environmental factors during the extreme flood season in Poyang Lake. Methods: The connected-lake heterogeneity of bacterial community composition (BCC) was investigated in Poyang Lake during the flood season in 2020. Illumina high-throughput sequencing technology was used in this study. Results: The bacterial community structure in the water was different from that in the sediment of Poyang Lake during extreme flood seasons. The bacterial diversity in water was much lower than that in sediment. In the water column, the dominant phyla were Actinobacteriota, while the composition of bacteria in sediment was more complex than that in water, and the dominant phyla in sediment were Proteobacteria, Chloroflexi, Acidobacteriota, and Actinobacteriota. The bacterial diversity in the water of Poyang Lake showed seasonal dynamics, while no seasonal variation of bacterial communities in sediment was observed. The bacterial community structure in the sediment from the two bays and channel areas of Poyang Lake can be distinguished from each other. The microbial diversity in sediment gradually increased from the Sancha Bay to the Zhouxi Bay and then to the channel, but the total nitrogen (TN) concentration in sediment (STN) and the total phosphorus (TP) concentration in sediment (STP) showed opposite trends. This might be due to the anthropogenic disturbances from the extreme flood. The bacterial community structure in, water column was significantly correlated with WT, NH4-N, STP, SOM, Chl a, DO, TP, and Eh, while the bacterial community structure in sediment was significantly correlated with SOM and STP. Conclusion: The bacterial community structure in water was greatly different from that in sediment in Poyang Lake during extreme flood seasons. The bacterial community structure in the water column was not only sensitive to the geochemical characteristics of the water but also affected by some nutrient concentrations in the sediment. During the wet seasons, bacterial diversity was only affected by SOM and STP.

2.
Front Oncol ; 14: 1338216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595812

RESUMO

Background: Papillary thyroid cancer (PTC) is prevalent among younger populations and has a favorable survival rate. However, a significant number of patients experience psychosocial stress and a reduced quality of life (QoL) after surgical treatment. Therefore, comprehensive evaluations of the patients are essential to improve their recovery. Methods: The present study enrolled 512 young and middle-aged patients diagnosed with PTC who underwent surgery at our institution between September 2020 and August 2021. Each participant completed a series of questionnaires: Generalized Anxiety Disorder 7 (GAD-7), European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30), Thyroid Cancer-Specific Quality of Life Questionnaire (THYCA-QoL), and Readiness to Return-to-Work Scale (RRTW). Results: GAD-7 data showed that almost half of the study subjects were experiencing anxiety. Regarding health-related quality of life (HRQoL), participants reported the highest levels of fatigue, insomnia, voice problems, and scarring, with patients in anxious states reporting worse symptoms. Based on RRTW, more than half of the subjects had returned to work and had better HRQoL compared to the others who were evaluating a possible return to work. Age, gender, BMI, education, diet, residence, health insurance, months since surgery, monthly income, and caregiver status were significantly correlated with return to work. Additionally, having a caregiver, higher monthly income, more time since surgery, and living in a city or village were positively associated with return to work. Conclusion: Young and middle-aged patients with PTC commonly experience a range of health-related issues and disease-specific symptoms following surgery, accompanied by inferior psychological well-being, HRQoL, and work readiness. It is crucial to prioritize timely interventions targeting postoperative psychological support, HRQoL improvement, and the restoration of working ability in PTC patients.

3.
Plant Phenomics ; 6: 0166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590393

RESUMO

Quantifying the relationship between light and stands or individual trees is of great significance in understanding tree competition, improving forest productivity, and comprehending ecological processes. However, accurately depicting the spatiotemporal variability of light under complex forest structural conditions poses a challenge, especially for precise forest management decisions that require a quantitative study of the relationship between fine-scale individual tree structure and light. 3D RTMs (3-dimensional radiative transfer models), which accurately characterize the interaction between solar radiation and detailed forest scenes, provide a reliable means for depicting such relationships. This study employs a 3D RTM and LiDAR (light detection and ranging) data to characterize the light environment of larch plantations at a fine spatiotemporal scale, further investigating the relationship between absorbed photosynthetically active radiation (APAR) and forest structures. The impact of specific tree structural parameters, such as crown diameter, crown area, crown length, crown ratio, crown volume, tree height, leaf area index, and a distance parameter assessing tree competition, on the daily-scale cumulative APAR per tree was investigated using a partial least squares regression (PLSR) model. Furthermore, variable importance in projection (VIP) was also calculated from the PLSR. The results indicate that among the individual tree structure parameters, crown volume is the most important one in explaining individual tree APAR (VIP = 4.19), while the competition from surrounding trees still plays a role in explaining individual tree APAR to some extent (VIP = 0.15), and crown ratio contributes the least (VIP = 0.03). Regarding the spatial distribution of trees, the average cumulative APAR per tree of larch plots does not increase with an increase in canopy gap fraction. Tree density and average cumulative APAR per tree were fitted using a natural exponential equation, with a coefficient of determination (R2 = 0.89), and a small mean absolute percentage error (MAPE = 0.03). This study demonstrates the potential of combining 3D RTM with LiDAR data to quantify fine-scale APAR in plantations, providing insights for optimizing forest structure, enhancing forest quality, and implementing precise forest management practices, such as selective breeding for superior tree species.

4.
Vaccines (Basel) ; 12(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543894

RESUMO

Human rotavirus (HRV) is still a leading cause of severe dehydrating gastroenteritis globally, particularly in infants and children. Previously, we demonstrated the immunogenicity of mRNA-based HRV vaccine candidates expressing the viral spike protein VP8* in rodent models. In the present study, we assessed the immunogenicity and protective efficacy of two mRNA-based HRV trivalent vaccine candidates, encoding VP8* of the genotypes P[8], P[6], or P[4], in the gnotobiotic (Gn) pig model of Wa (G1P[8]) HRV infection and diarrhea. Vaccines either encoded VP8* alone fused to the universal T-cell epitope P2 (P2-VP8*) or expressed P2-VP8* as a fusion protein with lumazine synthase (LS-P2-VP8*) to allow the formation and secretion of protein particles that present VP8* on their surface. Gn pigs were randomly assigned into groups and immunized three times with either P2-VP8* (30 µg) or LS-P2-VP8* (30 µg or 12 µg). A trivalent alum-adjuvanted P2-VP8* protein vaccine or an LNP-formulated irrelevant mRNA vaccine served as the positive and negative control, respectively. Upon challenge with virulent Wa HRV, a significantly shortened duration and decreased severity of diarrhea and significant protection from virus shedding was induced by both mRNA vaccine candidates compared to the negative control. Both LS-P2-VP8* doses induced significantly higher VP8*-specific IgG antibody titers in the serum after immunizations than the negative as well as the protein control. The P[8] VP8*-specific IgG antibody-secreting cells in the ileum, spleen, and blood seven days post-challenge, as well as VP8*-specific IFN-γ-producing T-cell numbers increased in all three mRNA-vaccinated pig groups compared to the negative control. Overall, there was a clear tendency towards improved responses in LS-P2-VP8* compared to the P2-VP8*mRNA vaccine. The demonstrated strong humoral immune responses, priming for effector T cells, and the significant reduction of viral shedding and duration of diarrhea in Gn pigs provide a promising proof of concept and may provide guidance for the further development of mRNA-based rotavirus vaccines.

5.
Viruses ; 16(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399961

RESUMO

Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.


Assuntos
COVID-19 , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/genética , Anticorpos de Domínio Único/genética , SARS-CoV-2/genética , Pandemias , Encéfalo , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
6.
Int J Legal Med ; 138(3): 1179-1186, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191742

RESUMO

The identification of hypothermia death (HD) is difficult for cadavers, especially the distinction from death due to alternative causes. A large number of studies have shown that brown adipose tissue (BAT) plays critical roles in thermoregulation of mammals. In this study, BAT of mice was used for the discrimination of HD using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). A modified mouse HD model conducted by Feeney DM was used in this study to obtain infrared spectra of BAT. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to establish discrimination models. The PLS-DA and OPLS-DA models exhibit prominent discriminative efficiency, and the accuracy of HD identification using fingerprint regions and ratios of absorption intensity is near 100% in both the calibration and validation sets. Our preliminary study suggests that BAT may be an extremely effective target tissue for identification of cadavers of HD, and ATR-FTIR spectra combined with chemometrics have also shown potential for cadaver identification in forensic practice in a fast and accurate manner.


Assuntos
Hipotermia , Animais , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Discriminante , Análise dos Mínimos Quadrados , Cadáver , Mamíferos
7.
Thorac Cancer ; 15(2): 111-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041547

RESUMO

BACKGROUND: The lung has a sophisticated microbiome, and respiratory illnesses are greatly influenced by the lung microbiota. Despite the fact that numerous studies have shown that lung cancer patients have a dysbiosis as compared to healthy people, more research is needed to explore the association between the microbiota dysbiosis and immune profile within the tumor microenvironment (TME). METHODS: In this study, we performed metagenomic sequencing of tumor and normal tissues from 61 non-small cell lung cancer (NSCLC) patients and six patients with other lung diseases. In order to characterize the impact of the microbes in TME, the cytokine concentrations of 24 lung tumor and normal tissues were detected using a multiple cytokine panel. RESULTS: Our results showed that tumors had lower microbiota diversity than the paired normal tissues, and the microbiota of NSCLC was enriched in Proteobacteria, Firmicutes, and Actinobacteria. In addition, proinflammatory cytokines such as IL-8, MIF, TNF- α, and so on, were significantly upregulated in tumor tissues. CONCLUSION: We discovered a subset of bacteria linked to host inflammatory signaling pathways and, more precisely, to particular immune cells. We determined that lower airway microbiome dysbiosis may be linked to the disruption of the equilibrium of the immune system causing lung inflammation. The spread of lung cancer may be linked to specific bacteria.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Microbiota , Humanos , Neoplasias Pulmonares/microbiologia , Disbiose/microbiologia , Pulmão , Citocinas , Microambiente Tumoral
8.
Environ Sci Pollut Res Int ; 31(2): 2930-2943, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38079038

RESUMO

Microcystis aeruginosa (M. aeruginosa) causes massive blooms in eutrophic freshwater and releases microcystin. Poyang Lake is the largest freshwater lake in China and has kept a mid-nutrient level in recent years. However, there is little research on microcystin production in Poyang Lake. In this study, water and sediment samples from ten sampling sites in Poyang Lake were collected from May to December in 2020, and from January to April in 2021 respectively. Microcystis genes (mcyA, mcyB, 16 s rDNA) were quantified by real-time fluorescence quantitative PCR analysis, and then the spatial and temporal variation of mcy genes, physicochemical factors, and bacterial population structure in the lake was analyzed. The relationship between the abundance of mcy genes and physicochemical factors in water column was also revealed. Results indicated that the microcystin-producing genes mcyA and mcyB showed significant differences in spatial and temporal levels as well, which is closely related to the physicochemical factors especially the water temperature (p < 0.05) and the nitrogen content (p < 0.05). The abundance of mcy genes in the sediment in December affected the abundance of mcy genes in the water column in the next year, while the toxic Microcystis would accumulate in the sediment. In addition to the toxic Microcystis, we also found a large number of non-toxic Microcystis in the water column and sediment, and the ratio of toxic to non-toxic species can also affect the toxicity production of M. aeruginosa. Overall, the results showed that M. aeruginosa toxin-producing genes in Poyang Lake distributed spatially and temporally which related to the physicochemical factors of Poyang Lake.


Assuntos
Microcystis , Microcystis/genética , Lagos/microbiologia , Microcistinas , Reação em Cadeia da Polimerase em Tempo Real , Água
9.
Transl Cancer Res ; 12(10): 2508-2517, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969367

RESUMO

Background: Cervical lymph node enlargement caused by coronavirus disease 2019 (COVID-19) vaccination has been reported, but little is known on whether the vaccination would influence preoperative cervical lymph node evaluation and its risk of lymph node metastasis in thyroid cancer. Methods: We retrospectively analyzed data of patients who underwent thyroid cancer surgery in Tangdu Hospital, China, from 1 March 2021 to 30 June 2021. A total of 182 patients were included in the cohort study. All patients with suspected malignant tumors underwent ultrasound (US)-guided fine needle aspiration (FNA) of thyroid lesions before surgery to confirm the diagnosis. Cervical lymph nodes were evaluated by preoperative physical examination and imaging. Wilcoxon rank-sum test and Fisher's exact test were used to evaluate the effect of vaccination on cervical lymph nodes in patients with thyroid cancer. Statistical significance was defined at P<0.05. Results: The patients were divided into two groups according to whether they had been vaccinated or not. Our results showed that there were no significant differences between the two groups in the brand of the vaccine, operation method, and the extent of surgery. Moreover, there was no significant difference in the evaluation of US characteristics of cervical lymph nodes between the two groups regardless of having the vaccination or not. Interestingly, US evaluation found that the experimental group's proportion of cervical lymph node enlargement increased significantly within 14 days after vaccination, which was statistically significant. Conclusions: This study found that vaccination against COVID-19 did not increase the number of cervical lymph node metastases, but inaccurate assessment of cervical lymph nodes in thyroid cancer patients within 14 days of vaccination (due to temporary lymph node enlargement) may lead to more extensive surgery.

10.
Viruses ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766270

RESUMO

Human rotavirus (HRV) is a leading cause of viral gastroenteritis in children across the globe. The virus has long been established as a pathogen of the gastrointestinal tract, targeting small intestine epithelial cells and leading to diarrhea, nausea, and vomiting. Recently, this classical infection pathway was challenged by the findings that murine strains of rotavirus can infect the salivary glands of pups and dams and transmit via saliva from pups to dams during suckling. Here, we aimed to determine if HRV was also capable of infecting salivary glands and spreading in saliva using a gnotobiotic (Gn) pig model of HRV infection and disease. Gn pigs were orally inoculated with various strains of HRV, and virus shedding was monitored for several days post-inoculation. HRV was shed nasally and in feces in all inoculated pigs. Infectious HRV was detected in the saliva of four piglets. Structural and non-structural HRV proteins, as well as the HRV genome, were detected in the intestinal and facial tissues of inoculated pigs. The pigs developed high IgM antibody responses in serum and small intestinal contents at 10 days post-inoculation. Additionally, inoculated pigs had HRV-specific IgM antibody-secreting cells present in the ileum, tonsils, and facial lymphoid tissues. Taken together, these findings indicate that HRV can replicate in salivary tissues and prime immune responses in both intestinal and facial lymphoid tissues of Gn pigs.


Assuntos
Infecções por Rotavirus , Rotavirus , Criança , Animais , Humanos , Suínos , Camundongos , Tecido Linfoide , Proteínas , Imunoglobulina M , Imunidade , Vida Livre de Germes , Glândulas Salivares
11.
Vaccine X ; 14: 100354, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37519778

RESUMO

Introduction: Hepatitis B remains a global problem with no effective treatment. Here, a mucosal vaccine candidate was developed with HBsAg and HBcAg, to provide both prophylactic and therapeutic protection against hepatitis B. The antigens were presented using the P particle of human norovirus (HuNov). As a result, the chimeric HBV - HuNoV P particle can act as a dual vaccine for hepatitis B and HuNoV. Methods: The vaccine candidate was expressed and purified from Escherichia coli BL21 (DE3) cells. HBV-HuNoV chimeric P particles were successfully expressed and isolated, with sizes of approximately 25.64 nm. Then, the HBV-HuNoV chimeric P particles were evaluated for safety and immunogenicity in mice and gnotobiotic (Gn) pigs. After three doses (5 µg/dose in mice and 200 µg/dose in Gn pigs) of intranasal immunization, humoral and cellular immune responses, as well as toxicity, were evaluated. Results: The vaccine candidate induced strong HBV-HuNoV specific IFN-γ producing T-cell responses in the ileum, spleen, and blood of Gn pigs. Serum IgG and IgA antibodies against HBV-HuNoV chimeric P particles also increased significantly in Gn pigs. Increased HBsAg- and HuNoV-specific serum IgG responses were observed in mice and Gn pigs, although not statistically significant. The vaccine candidate did not show any toxicity in mice. Conclusions: In summary, the chimeric HBV-HuNoV P particle vaccine given intranasally was safe and induced strong cellular and humoral immune responses in Gn pig. Modifications to the vaccine structure and dosage need to be evaluated in future studies to further enhance immunogenicity and induce more balanced humoral and cellular responses.

12.
ACS Appl Mater Interfaces ; 15(31): 37184-37192, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489943

RESUMO

The accurate and effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to preventing the spread of infectious diseases and ensuring human health. Herein, a nanobody-displayed whole-cell biosensor was developed for colorimetric detection of SARS-CoV-2 spike proteins. Serving as bioreceptors, yeast surfaces were genetically engineered to display SARS-CoV-2 binding of llama-derived single-domain antibodies (nanobodies) with high capture efficiency, facilitating the concentration and purification of SARS-CoV-2. Gold nanoparticles (AuNPs) employed as signal transductions were functionalized with horseradish peroxidase (HRP) and anti-SARS monoclonal antibodies to enhance the detection sensitivity. In the presence of SARS-CoV-2 spike proteins, the sandwiched binding will be formed by linking engineered yeast, SARS-CoV-2 spike proteins, and reporter AuNPs. The colorimetric signal was generated by the enzymatic reaction of HRP and its corresponding colorimetric substrate/chromogen system. At the optimal conditions, the developed whole-cell biosensor enables the sensitive detection of SARS-CoV-2 spike proteins in a linear range from 0.01 to 1 µg/mL with a limit of detection (LOD) of 0.037 µg/mL (about 4 × 108 virion particles/mL). Furthermore, the whole-cell biosensor was demonstrated to detect the spike protein of different SARS-CoV-2 variants in human serum, providing new possibilities for the detection of future SARS-CoV-2 variants.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , COVID-19/diagnóstico , Colorimetria , Ouro , SARS-CoV-2 , Saccharomyces cerevisiae , Glicoproteína da Espícula de Coronavírus , Peroxidase do Rábano Silvestre
13.
Gene ; 873: 147468, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37169154

RESUMO

Ferroptosis, being classified as a form of regulated cell death, was driven by the oxidative injury induced by lipid peroxidation (LPO). Recently, ferroptosis has been confirmed to exert a critical effect in the pathogenesis and treatment of various tumors, including gastric cancer (GC). Erastin, as a frequently used ferroptosis inducer, caused ferroptosis by downregulating the xCT expression resulting in increasing reactive oxygen species (ROS) and aggravating the LPO. However, the mechanisms of Erastin in ferroptosis regulation, especially in GC, remain largely elusive. This work firstly demonstrated that Erastin inhibited cell growth and promoted apoptosis and ferroptosis in AGS and BGC823 cells. Then, based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of Erastin-related targets screened by using PharmMapper Web, the P38MAPK signaling was explored and validated in AGS and BGC-823 cells. Besides, the Fer-1 and P38 inhibitor were performed to investigate the mechanisms of ferroptosis induced by Erastin in depth. This work revealed a feedback mode among xCT, ROS and the P38MAPK pathway, which affected each other. It meant that Erastin regulated ferroptosis through the xCT-mediated ROS/P38MAPK signaling feedback loop. In addition, it was noticed that in co-operation with Erastin, the cytotoxic effects of Afatinib on cells were aggravated by further strengthening ferroptosis with activation of the P38MAPK pathway. In summary, those works provided evidence that Erastin plays an important role in increasing the cytotoxic effect on GC cells treated with Afitinib. Furthermore, the Erastin-induced ferroptosis via the xCT-mediated ROS/P38MAPK pathway feedback loop provides new strategies for GC comprehensive treatment.


Assuntos
Neoplasias Gástricas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Afatinib , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Retroalimentação
14.
J Agric Food Chem ; 71(22): 8665-8672, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227100

RESUMO

Human noroviruses pose grave threats to public health and economy. In this study, we genetically engineered yeast (Saccharomyces cerevisiae EBY100) to display specific norovirus-binding nanobodies (Nano-26 and Nano-85) on cell surface to facilitate the concentration of noroviruses for improved detection. Binding of norovirus virus-like particles (VLPs) to these nanobody-displaying yeasts was confirmed and characterized using confocal microscopy and flow cytometry. The ability of our engineered yeasts to capture norovirus VLPs can reach up to 91.3%. Furthermore, this approach was applied to concentrate and detect norovirus VLPs in a real food matrix. A wide linear detection range (1-104 pg/g) was observed, and the detection limit on spiked spinach was calculated as low as 0.071 pg/g. Overall, our engineered yeasts could be a promising approach to concentrate and purify noroviruses in food samples for easy detection, which allows us to prevent the spread of food-borne virus in the food supply chain.


Assuntos
Norovirus , Anticorpos de Domínio Único , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Norovirus/genética
15.
Vaccines (Basel) ; 11(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37243031

RESUMO

Human rotavirus (HRV) is the causative agent of severe dehydrating diarrhea in children under the age of five, resulting in up to 215,000 deaths each year. These deaths almost exclusively occur in low- and middle-income countries where vaccine efficacy is the lowest due to chronic malnutrition, gut dysbiosis, and concurrent enteric viral infection. Parenteral vaccines for HRV are particularly attractive as they avoid many of the concerns associated with currently used live oral vaccines. In this study, a two-dose intramuscular (IM) regimen of the trivalent, nanoparticle-based, nonreplicating HRV vaccine (trivalent S60-VP8*), utilizing the shell (S) domain of the capsid of norovirus as an HRV VP8* antigen display platform, was evaluated for immunogenicity and protective efficacy against P[6] and P[8] HRV using gnotobiotic pig models. A prime-boost strategy using one dose of the oral Rotarix® vaccine, followed by one dose of the IM trivalent nanoparticle vaccine was also evaluated. Both regimens were highly immunogenic in inducing serum virus neutralizing, IgG, and IgA antibodies. The two vaccine regimens failed to confer significant protection against diarrhea; however, the prime-boost regimen significantly shortened the duration of virus shedding in pigs challenged orally with the virulent Wa (G1P[8]) HRV and significantly shortened the mean duration of virus shedding, mean peak titer, and area under the curve of virus shedding after challenge with Arg (G4P[6]) HRV. Prime-boost-vaccinated pigs challenged with P[8] HRV had significantly higher P[8]-specific IgG antibody-secreting cells (ASCs) in the spleen post-challenge. Prime-boost-vaccinated pigs challenged with P[6] HRV had significantly higher numbers of P[6]- and P[8]-specific IgG ASCs in the ileum, as well as significantly higher numbers of P[8]-specific IgA ASCs in the spleen post-challenge. These results suggest the promise of and warrant further investigation into the oral priming and parenteral boosting strategy for future HRV vaccines.

16.
Breast Cancer Res ; 25(1): 34, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36998014

RESUMO

BACKGROUND: HER2-low could be found in some patients with triple-negative breast cancer (TNBC). However, its potential impacts on clinical features and tumor biological characteristics in TNBC remain unclear. METHODS: We enrolled 251 consecutive TNBC patients retrospectively, including 157 HER2-low (HER2low) and 94 HER2-negtive (HER2neg) patients to investigate the clinical and prognostic features. Then, we performed single-cell RNA sequencing (scRNA-seq) with another seven TNBC samples (HER2neg vs. HER2low, 4 vs. 3) prospectively to further explore the differences of tumor biological properties between the two TNBC phenotypes. The underlying molecular distinctions were also explored and then verified in the additional TNBC samples. RESULTS: Compared with HER2neg TNBC, HER2low TNBC patients exhibited malignant clinical features with larger tumor size (P = 0.04), more lymph nodes involvement (P = 0.02), higher histological grade of lesions (P < 0.001), higher Ki67 status (P < 0.01), and a worse prognosis (P < 0.001; HR [CI 95%] = 3.44 [2.10-5.62]). Cox proportional hazards analysis showed that neoadjuvant systemic therapy, lymph nodes involvement and Ki67 levels were prognostic factors in HER2low TNBC but not in HER2neg TNBC patients. ScRNA-seq revealed that HER2low TNBC which showed more metabolically active and aggressive hallmarks, while HER2neg TNBC exhibited signatures more involved in immune activities with higher expressions of immunoglobulin-related genes (IGHG1, IGHG4, IGKC, IGLC2); this was further confirmed by immunofluorescence in clinical TNBC samples. Furthermore, HER2low and HER2neg TNBC exhibited distinct tumor evolutionary characteristics. Moreover, HER2neg TNBC revealed a potentially more active immune microenvironment than HER2low TNBC, as evidenced by positively active regulation of macrophage polarization, abundant CD8+ effector T cells, enriched diversity of T-cell receptors and higher levels of immunotherapy-targeted markers, which contributed to achieve immunotherapeutic response. CONCLUSIONS: This study suggests that HER2low TNBC patients harbor more malignant clinical behavior and aggressive tumor biological properties than the HER2neg phenotype. The heterogeneity of HER2 may be a non-negligible factor in the clinical management of TNBC patients. Our data provide new insights into the development of a more refined classification and tailored therapeutic strategies for TNBC patients.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antígeno Ki-67 , Estudos Retrospectivos , Prognóstico , Microambiente Tumoral/genética
17.
bioRxiv ; 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36993215

RESUMO

In this work, we developed llama-derived nanobodies (Nbs) directed to the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Nanobodies were selected after the biopanning of two VHH-libraries, one of which was generated after the immunization of a llama (lama glama) with the bovine coronavirus (BCoV) Mebus, and another with the full-length pre-fused locked S protein (S-2P) and the RBD from the SARS-CoV-2 Wuhan strain (WT). Most of the neutralizing Nbs selected with either RBD or S-2P from SARS-CoV-2 were directed to RBD and were able to block S-2P/ACE2 interaction. Three Nbs recognized the N-terminal domain (NTD) of the S-2P protein as measured by competition with biliverdin, while some non-neutralizing Nbs recognize epitopes in the S2 domain. One Nb from the BCoV immune library was directed to RBD but was non-neutralizing. Intranasal administration of Nbs induced protection ranging from 40% to 80% against COVID-19 death in k18-hACE2 mice challenged with the WT strain. Interestingly, protection was not only associated with a significant reduction of virus replication in nasal turbinates and lungs, but also with a reduction of virus load in the brain. Employing pseudovirus neutralization assays, we were able to identify Nbs with neutralizing capacity against the Alpha, Beta, Delta and Omicron variants. Furthermore, cocktails of different Nbs performed better than individual Nbs to neutralize two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest these Nbs can potentially be used as a cocktail for intranasal treatment to prevent or treat COVID-19 encephalitis, or modified for prophylactic administration to fight this disease.

18.
Front Oncol ; 13: 1071415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798821

RESUMO

Because of its high prevalence and poor long-term clinical treatment effect, liver disease is regarded as a major public health problem around the world. Among them, viral hepatitis, fatty liver, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and autoimmune liver disease are common causes and inducements of liver injury, and play an important role in the occurrence and development of hepatocellular carcinoma (HCC). Tanshinone IIA (TsIIA) is a fat soluble polyphenol of Salvia miltiorrhiza that is extracted from Salvia miltiorrhiza. Because of its strong biological activity (anti-inflammatory, antioxidant), it is widely used in Asia to treat cardiovascular and liver diseases. In addition, TsIIA has shown significant anti-HCC activity in previous studies. It not only has significant anti proliferation and pro apoptotic properties. It can also play an anti-cancer role by mediating a variety of signal pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-B (NF-κB). This review not only reviews the existing evidence and molecular mechanism of TsIIA's anti-HCC effect but also reviews the liver-protective effect of TsIIA and its impact on liver fibrosis, NAFLD, and other risk factors for liver cancer. In addition, we also conducted network pharmacological analysis on TsIIA and HCC to further screen and explore the possible targets of TsIIA against hepatocellular carcinoma. It is expected to provide a theoretical basis for the development of anti-HCC-related drugs based on TsIIA.

19.
Transl Cancer Res ; 12(1): 31-45, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36760385

RESUMO

Background: It has been established that clusterin is involved in the invasion of immune cells in the tumor microenvironment, but it remains unknown how it promotes immune invasion in breast cancer. Methods: We used Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA) databases to assess the relation between expression of clusterin and immunoinfiltration-related marker genes. TIMER database was used to evaluate the expression of clusterin, and its relation to tumor immune invasion was examined. Based on Kaplan-Meier plotter database, we investigated the association between clusterin expression and prognosis in patients with cancer, and the impact of clinicopathological factors and cancer-related outcomes. Results: Clusterin expression was markedly associated with prognosis of a variety of tumors, specifically breast cancer. Enhanced clusterin expression was markedly associated with molecular typing of breast cancer and expression of multiple markers related to specific immune cell subsets. Conclusions: These results indicate that clusterin is connected to prognosis of breast cancer patients and tumor immune cell infiltration. This demonstrates that clusterin may be a biomarker of immune cell recruitment into breast tumors and an important biomarker for immune cell infiltration; consequently being a valuable prognostic factor in breast cancer patients.

20.
J Food Sci ; 88(4): 1743-1752, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36789868

RESUMO

Enrofloxacin (ENR) and sulfachloropyridazine combined with trimethoprim (TMP) were commonly used in poultries to treat bacterial infections. In this study, the pharmacokinetics of these antibiotics in four tissues of Taihe black-boned silky fowls was studied. The results showed that these drugs were absorbed and distributed rapidly, with the highest concentration showing in skin. Meanwhile, ENR and its metabolite ciprofloxacin (CIP) and TMP were depleted slowly, particularly in skin with the elimination half-lives being 37.1, 36.9, and 72.7 days, respectively. It may be attributed to the abundance of melanin in skin. The dietary risk assessment suggested that the long-term dietary intakes of ENR, CIP, and TMP showed a considerable threat to human health. Based on the experiment, the withdrawal times of 284 days for ENR + CIP and 159 days for TMP were acquired, which showed that these drugs are not appropriate for the application in Taihe black-boned silky fowls.


Assuntos
Ciprofloxacina , Sulfacloropiridazina , Humanos , Enrofloxacina/farmacocinética , Trimetoprima , Antibacterianos , Fluoroquinolonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...